LAND USE CAPABILITY CLASSIFICATION

A Land Use Capability (LUC) survey contains 2 sets of land resource information:

- Land resource *inventory* (factual information)
- *Land use capability* assessment (interpretive)

LAND RESOURCE INVENTORY

Over the last 20 years, one of the most valuable land use planning tools has been the Land Use Capability Classification. Land Resource Inventory (LRI) was a system devised in the USA and first used in New Zealand in 1941, initially to inventory land resources at a farm scale. It was not until 1967 when the passing of the Water and Soil Conservation Act that wider applications of LRI were envisaged. This was prompted by the demonstrated need for catchment inventories in order to comply with the management implications of the new Act. Surveys were carried out by the former Ministry of Works and Development (now Landcare Research NZ Ltd). The data is stored in a GIS and presented in map form. Surveys were undertaken at a scale of 1:63.360 (one inch to one mile) then 1:50.000 (1 cm to 500 m). In areas of need, more detailed surveys, often at farm scale, have been completed to assist individual farmers in planning land use on their farms and to combat erosion problems. The main clients for the survey were initially the Catchment Boards whose role is now within Regional Councils. The LRI was driven by the vision of one man in particular, Ken Mitchell, the head of the then Ministry of Works and Development.

The LRI worksheets are available from; Landcare Research Ltd, PB 11-052, Palmerston North

Mapping was done by teams of 3 - 4 recent graduates and summer workers, supervised by personnel experienced in land inventory mapping. A sheet was mapped in 1 - 2 months. Although the original data was published as a series of maps (worksheets), subsequently the data has been digitised and can be stored, manipulated and analysed using computers. Thus present day major users such as Regional Councils can work with the digital data in GIS databases rather than paper maps.

LAND RESOURCE INVENTORY CODE

<u> Rock Type - Soil Unit - Slope</u>	e.g.	<u> Tp – Ot - A</u>
Present Erosion - Vegetation Cover		Θ-Ρ1

Tp = Taupo pumice alluvium

Ot = Otakiri sand

A = $0-3^{\circ}$ slope

- Θ = No significant erosion
- P1 = High producing pasture

The symbols are explained in the legend that accompanies each map.

A series of mapping units are delineated which are physically homogenous within the limitations of the mapping scale: where any one factor changes significantly a boundary is drawn and a new mapping unit created. Using the above inventory parameters and other relevant physical information such as climate, erosion potential, effects of previous land use, land management practices, physical and chemical properties of soils, physical properties of rock types and flood risk; each mapping unit is given an assessment of its LUC, i.e. its capacity for permanent sustained production.

Rock Type

Obvious sources of data for rock types were the published geological maps of New Zealand, produced by the then New Zealand Geological Survey. The whole of New Zealand was covered by the 1:250,000 series but the 1:63,360 (later 1:50,000) series, although comprehensive, was not complete. In particular, the areas not covered were precisely the steep, eroding areas most important for catchment management.

TABLE 1: North Island Rock types used in the NZLRI

Vo	lcanic Lithologies	Sediı	mentary Lithologies
Na	Naturubaa ash	D+	Doot
ng Ta			real
Та	l arawera ash and lapilil	VVD	Sands-windblown
Rm	Rotomahana ash	Lo	Loess
Kt	Kaharoa and Taupo ashes	Al	Undifferentiated flood plain
Мо	Ashes older than Taupo ash		alluvium
Lp	Lapilli	Gr	Gravels
Тр	Taupo and Kaharoa breccia and	Us	Unconsolidated silts, ashes,
	volcanic alluvium		sands, tuffs and breccias
Ft	Breccias older than Taupo	Mm	Mudstone or fine siltstone-
brecc	ia		massive
La	Lahar deposits	Mb	Mudstone or siltstone - banded
Vo	Welded volcanic rocks	Mj	Mudstone or siltstone - jointed
Gn	Crystalline intrusive rocks	Ме	Mudstone - bentonitic
		Sm	Sandstone or siltstone -
Note		massi	ive
*	denotes deep weathering	Sb	Sandstone - banded
(Al)	significant in patches	Ar	Argillite
Lo/G	w stratigraphic succession,	Ac	Argillite - crushed
	surface rocks first	Li	Limestone
		Gw	Greywacke

A further problem was that the published maps all recorded map units in terms of <u>rock age</u> rather than <u>rock type</u>. This was of little value for determining surficial rock types that were related to erosion processes, i.e. soil-forming parent materials and susceptibility to erosion. As a result simplified lithological classifications were developed for the LRI worksheets based on rock characteristics that affect land management and water quality. The North and South Islands had separate classifications because the rock types differed considerably. For example, young volcanic ash layers dominate much of the central North Island but are rare in the South Island.

Soil

This was the most controversial aspect of the LRI mapping. Soil map coverage of New Zealand is limited at the 1:63,360 or 1:50,000 scale and the only national coverage was at 1:250,000. The information from these small-scale maps had to be carefully interpreted and was not really easily transposed to a 1:63,360 map. The soils information was supplemented by additional field observations, interpretations of soil parent materials and analysis of aerial photographs. This led to some conflict between the then Soil Bureau and MOWD over the

accuracy of the soils information. On the one hand the MOWD staff were not usually experienced at soil mapping, were working quickly and were focussed on applications to erosion. On the other hand Soil Bureau staff were experienced at soil mapping but traditional soil mapping was slow and recorded very detailed information about a soil.

Symbols and names on the worksheets were drawn from existing soil surveys, where available, and the user is referred to the appropriate soil map and bulletin on the worksheet for more detailed soils information. Note that the worksheets are not soil maps but they will give an indication of the soils you are most likely to find.

Al Th Ms Cg Fy	Alluvium, colluvium, moraine Basic - intermediate ash Soft mudstone Soft Conglomerate Interbedded soft sandstone and rnudstone	Wb Lo Ss Ls Gw Ma	Sand Loess Soft sandstone Soft limestone Greywacke Marble
н	Hard limestone	Ms	Hard sandstone
St	Schist		
An	'Argillite', hard mudstone	Ar2	Sheared argillite
On	Coarse crystalline rocks	Um	Ultramafite
Vo	Volcanic lavas, flows	Pt	Peat
In	Intrusives, ancient volcanics	Ι	Perennial ice and snow
Os	Gneiss		
Note			
()	denotes significance in pa	atches	
Lo/Gw	denotes stratigraphic succ	cessio	n, surface rocks first
w	denotes deep weathering		

 TABLE 2: South Island Rock types used in the NZLRI

Note that on flat land the major difference between LRI units is usually the soil factor and soil maps will give more detailed information that can be interpreted for land use or management. In hill country, however, erosion processes dominate and the other LRI factors are more important for land use or management interpretations.

Slope

Slope angles for each area were measured using an Abney level or estimated visually in the field. The data was recorded in one of seven slope groups and the slope group recorded in the LRI code.

Table 3: NZLRI Slope Groups

Slope	Description	Landform Units	Limitations	
Groups				
A 0°-3°	Flat to gently	Floodplains,	Problems of	
	undulating	terraces	rill erosion	
			and topsoil	
B 4º-7º	Undulating	Fans, gently	displacement	
		sloping downs	increase with	
	5 W		slope	
C 8°-15°	Rolling	Downs, steep fans		ARABLE
D 16°-20°	Strongly rolling	Easy hill country,	Cultivate for	
		downs	pasture development	
E 21°-25°	Moderately	Hill country		
	steep			
F 26°-35°	Steep	Steep hill country,		NON-
		mountain lands		ARABLE
G >35°	Very steen	Very steen slones		
		rock faces, cliffs		

Note that compound slopes can be recorded, for example C + D indicates slopes of both groups present. C/D indicates slopes borderline between the twos slope classes. The use of an apostrophe indicates a dissected slope, for example A' indicates flat land dissected by gullies.

Erosion

Erosion mapping was based on common types of erosion with relevance to land use and includes a rating for severity. The mapped erosion was that current at the time of the survey and still showing evidence of activity in the form of bare ground or surface expression.

Fourteen erosion types were mapped (Table 2.1-3). Severity was estimated on the basis of area for wind, sheet and scree creep and on "seriousness" for the remaining erosion types. The factors used in this assessment included rock type, rate and depth of movement, frequency of erosion events, cost and feasibility of control and economic effect.

Table 4: NZLRI Erosion type and degree

	Types of Erosion				gree of Erosion
Sh	sheet	EF	earth flow	θ	negligible
W	wind	MF	mud flow	1	slight
Sc	scree slip	R	rill	2	moderate
SSi	soil slip	G	gully	3	severe
ESi	earth slip	Т	tunnel gully	4	very severe
Su	slump	Sb	streambank	5	extreme
DaF	debris avalanche	D	deposition		

Erosion types are discussed in detail in the section on management of eroding soils.

Vegetation

Five major groups were used to record vegetation cover; cropland, grasslands, forest, scrub and fern, and miscellaneous weeds. Further subdivision was made to emphasise agriculturally important species or associations of species. A maximum of three vegetation groups are recorded for each unit area. Note that the vegetation groups recorded were those present at the time of the survey.

Table 5: NZLRI Vegetation Classes

GRAS	SLAND	CROPLAND		
	Unspecified grassiand		Unspecified crops	
	High producing pasture			
PZ			Orchards and vineyards	
or nat	cive grassiand	L3	Roots and green fodder crops	
P3	Short tussock assns, mainly	L4	Horticulture	
	silver and hard tussock, etc			
P4	Snow tussock associations			
P5	Red tussock associations			
P6	Sand dune associations			
SCRU	JBLAND	FORE	ST	
м	Uppen orified comula accordiations	N	Unen orified forget according	
M1		IN N1	Constal forest	
			Coastanorest	
	Tauninu (Cassinia)		Kauri De de eave havdwaad	
		CN		
			(a) Lowianu (b) Mid latituda	
MC	Sub-alpine scrub associations	NA	(D) Mid Ialilude	
		114	Notiolagus	
	Broom		(a) Lowiana	
MO	GOISE Blackborn		(D) Figniana Hardwood	
M10	DidCKDelly Cure et hvier			
	Sweet Driar		Exolic Torest	
	Malagouri	IN7	Podocarps	
MIZ	Mangroves	INO	Conservation trees	
WEED	DS, HERBS, ETC			
н	Unspecified herbaceous plant			
assoc	iation			
H1	Swamp associations			
H2	Rushes, sedges			
H3	Sand dune associations			
H4	Sub-alpine herb associations			
H5	Salt tolerant associations			
H6	Pakihi			
H7	Semi-arid herbfield associations			
А сар	ital letter indicates type of vegetati	oncom	prises >40% of the unit area and	
a sma	all letter <40% while c indicates cut	over fo	orest.	

Recent Changes to LRI

The LRI code has been recently updated and the changes are described in detail in the lastest LUC Handbook available from Landcare Research. This also can be accessed as a black and white pdf file from the Landcare website *www.landcare.cri.nz*.

The significant changes include revision of categories in rock types, use of the new NZ Soil classification in more recent surveys, condensing soil slip and earth slip into a single category of soil slip, addition of a modifier to indicate shallow or deep movement in relavant erosion types, more detailed criteria for assessing erosion intensity such as % area in a unit that is eroded and modifications to vegetation information that provide more detailed information. These changes are most relevant to more recent maps, however, the older paper copy LRI Worksheets use only the earlier definitions. To reiterate – the information on a worksheet is relevant to the time that the worksheet was complied and can change with time. Always check the date and bear this in mind when examining worksheet data.

LAND USE CAPABILITY

Introduction

Land Use Capability (LUC, or Rural Land Use Capability, RLUC, to distinguish it from Urban LUC) is an <u>assessment</u> of the land according to its suitability for permanent, sustained production. This is based on its physical properties determined in the LRI. The assessment carries a use-risk factor as it is an assessment based on current technology and conditions at the time of assessment and outcomes of land use may depend on other influences, such as technology change. It does not indicate a preferred land use for a given area; rather it shows the currently assessed capability of the land within its determined physical limitations.

LUC Classes

The major grouping of the LUC assessment is the LUC class (Figure 1). There are 8 classes ranked in order of decreasing capability for use from I to VIII (Table 6). The capability class of an area of land indicates its total degree of limitation and the higher the class the less versatile the land. Class I to IV lands are generally arable while class V to VIII land is unsuitable for cropping. Class I land is the best agricultural and horticultural land in New Zealand and is able to be used for a wide variety of crops with insignificant physical limitations to arable use. In contrast, Class VIII land has maximum limitations to land use with no capacity for permanent, sustainable production.

Figure 1: The LUC code and its components

Table 6: Description of LUC Classes

CLASS	LIMITATIONS	LANDSCAPE AND CLIMATE	LOCATION
Ι	Versatile, multiple use land with minimal physical	Flat to nearly flat with deep, easily	Confined to small areas of well drained
	limitations to arable land use. No plant nutrient	worked soils. Climate favourable to	soils derived from alluvium and are
	deficiencies and respond to fertiliser applications.	growth of a variety of plants	mostly located on flood plains of major
	Minimal erosion risk.		rivers. Occurs throughout New Zealand
			but the total area is small.
II	Very good land with slight limitations to arable use	Flat to undulating land that can be	More abundant than class I land and
	that can be overcome by management and	used for cultivated crops, forestry	occur in similar locations with the
	conservation practises. Limitations are wetness,	or pastures.	addition of some areas of fine textured
	slight textural problems or shallow soils.		volcanic loam in the North Island.
III	Moderate limitations restrict the range of crops	Undulating to rolling country that	Widely distributed throughout New
	and/or make special conservation measures	can be used for some cultivated	Zealand on undulating to rolling country.
	necessary. Moderate erosion risk when cultivated,	crops, pastures and forestry.	
	shallow or stony soils of plains and terraces and soils		
	of narrow river valleys where runoff causes wetness.		
IV	Severe limitations to arable use, such as erosion,	Undulating to strongly rolling	Occurring in similar situations to Class III
	shallow, stony and/or low fertility soils, excessive	country, but with more pronounced	land but with more severe limitations to
	wetness and climate effects of altitude requiring	limitations than Class III land.	cropping.
	careful management and/or intensive conservation.	Colder, higher altitudes.	
V	High producing pastoral land unsuitable for cropping	Strongly rolling to moderately	Limited extent and confined to stable hill
	but with few limitations to pastoral or forestry use.	steep hill country or bouldery river	country or localised areas of river flats.
	Limitations to arable use are slope, presence of	flats. Often has a climate limitation.	
	boulders or rock outcrops and excessive wetness.		
	Erosion is not a dominant limitation in this class with		

	the land surface stable under a permanent vegetation		
	cover.		
VI	Non-arable land with moderate limitations and	Relatively stable hill country and	Widely distributed and includes most of
	hazards under perennial plant cover. Erosion is the	some shallow soils on fans and	New Zealand's good, relatively stable hill
	dominant limitation but can be minimised by using	terraces.	country.
	appropriate conservation measures. Soil limitations		
	occur but wetness and climatic factors are less		
	dominant.		
VII	Unsuitable for cultivation with severe limitations or	Eroding hill and steeplands, high	Most of the eroding hill and steepland
	hazards under perennial vegetation. Similar	altitude lands and shallow, stony	soils of the North Island and the South
	limitations to Class VI but more intense. Risk of	and/or low fertility soils of the fans	island "high country" and West Coast
	erosion is usually the dominant limitation, requiring	and terraces.	Pakahi soils
	careful conservation for grazing use. Can also have		
	severe soil, wetness and climate limitations. Can only		
	support extensive grazing or erosion control forestry.		
VIII	Very severe to extreme limitations and hazards;	High mountainous country but may	Land of the axial ranges and other
	unsuitable for arable, pastoral or production forestry	include very steep slopes or highly	mountainous areas of both North and
	use. Soil conservation and water quality are the main	erodable areas such as foredunes	South Islands, coastal dunes and areas
	issues in land use. Main limitation is extreme actual	at lower altitudes.	of very steep slopes in hill and steepland
	or potential erosion. Used for catchment protection,		areas.
	recreation and water management.		

Examples of classes I to VIII are shown in Figure 2.

LUC Subclasses

The second factor in the LUC code is the subclass, which indicates the dominant kind of limitation (Table 7). Note that only one subclass can be expressed and the dominant is selected; there may be other subordinate limitations also present. Each LUC unit must have a subclass and some units to which the erodability, wetness or soil limitations do not apply are classed as having a climate limitation by default. There is an inverse relationship between limitations and versatility (Table 8).

Subclass	Description	Definition
е	erodability	where the susceptibility to erosion is the dominant limitation to land use
w	wetness	where a high water table, slow internal drainage and/or flooding constitutes the major limitation to use
S	soil limitation	where the major limitation to land use is a limitation in the rooting zone. This can be due to a shallow profile, stoniness, rock outcrops, low soil water holding capacity, low fertility (where this is difficult to correct) and salinity or toxicity
с	climate	where the climate is the major limitation to land use

Table 7: LUC Subclass definitions

LUC Units

The land use capability (represented by an Arabic number) *groups together those inventory units which require the same kind of management, the same kind and intensity of conservation treatment and are capable of growing the same kind of crops, ,pasture or forest species with about the same potential yield.*

For example, four areas of land might be classed as VIe3, VIe7, VIe12 and VIe16 respectively. All have the same broad degree of limitation (Class VI) and all have the same dominant type of limitation (subclass e). However, the units differ in the kinds of crops able to be grown and potential yields, or management or conservation techniques required for sustainable production. LUC units are only relevant to a particular regional survey, e.g. Taranaki –Manawatu, and cannot be compared across regions. Capability units are arranged in order of decreasing versatility and increasing limitation to use, e.g. VIIIe5 has a higher capability than VIIe8 but not as high as VIIe2.

Table 8: LUC Limitations vs Versatility

	Class	Cropping Suitability	General Pastoral & Production Forestry Suitability	General Suitability
Ī	Ι	High		
Ī	II			Multiple
Ī	III	Medium	High	Use Land
Ī	IV	Low		
Ī	V		Medium	
Ī	VI			Pastoralor
			Low	Forestry
		Unsuitable		Land
	VII			Catchment
,	VIII			Protection land

Extended Legends

Each set of worksheets is accompanied by a set of extended legends that vary from region to region. These comprise tables of the physical data relating to each of the LUC units. Table 9 is an example of an extended legend for the Taranaki –Manawatu Region.

Examples of each of the LUC classes is shown on the STREAM site.

Table 9: Example of an LUC extended legend.

		PRESENT LAND				POTENTIAL LAND USE		
.UNIT	UNIT DESCRIPTION	USE	GRAZING Carrying Capacity (SU/ha)				EXOTIC FOREST	
			Present Average	Top farmer	Attainable physical potential	CROPPING	FORESTRY	GROWTH POTENTIAL (site index <i>P.</i> <i>radiata</i>)
IIw2	Flat river terraces with deep fertile soils which have a continuing slight wetness limitation after drainage. Unit occurs predominantly in the Manawatu but is widespread throughout the region	Intensive grazing, incl. Dairying. Horticulture incl. Vegetable cropping. Cereal cropping. Root and green fodder cropping.	19	25	30	Horticulture. Cereals. Root and green fodder crops.	Production	33-35

PASTURE	FERTILISER REQUIREMENTS FOR SHEEP		TYPICAL SOILS	
	AND CATTLE GRAZING			
	MAINTENANCE	ROCK TYPE		

INITIAL	TIAL At present At attainable		Trace					NAME		Symbol	*Survey
	average	physical	elements								
	grazing	potential									
	capacity	grazing levels									
							G	ley Recent soils:			
600 kg/	ha 250 kg/ha	400 kg/ha		Undifferentiated		AI	Kairanga silt loam and		clay	2	1
super-	super-	super-		flood plain			lo	am		К	7
phosph	ate phosphate	phosphate		alluvium			Ka	Kairanga silt loam		4	9
										K1	10
							Kairanga fine sandy loa		am	4b	9
							Kä	airanga heavy silt loa	m		
							G	ley soils:		8	9
							Te	e Arakura silt loam		8a	9
							Te	e Arakura fine sandy	loam	8b	9
						ר		Te Arakura sandy loam		Te2	10
SLOPE	EROSION		,	VEGETATION TY		TYPE LOCALITY		SOIL ADDIT		IONAL	
								CONSERVATION	COMM	IENTS	
PRESENT		POTENTIAL					AND WATER				
								MANAGEMENT			
								MEASURES			
	Nil to slight	l to slight Nil to slight		High producing		N149/070365		Shelterb		elts	
Α	streambank	eambank streambank		asture.	Intersection of				required for		
			C	Cereals.		Flygers Line and			horticultu	ure.	
	Roota		oot and green	Gillespies Line.							
			fc	odder crops.							